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Abstract

Let S be a set with = w + b points in general position in the plane,of them white, and of them black.
We consider the problem of computidg S), a largest non-crossing matching of pairs of points of the same color,
using straight line segments. We present two new algorithms which compute a large matching, with an improved
guarantee in the number of matched points. The first one rungif) @me and finds a matching of at least 85%
of the points. The second algorithm runs ir@pgnr) time and achieves a performance guarantee as close as we
want to that of the first algorithm. On the other hand, we show that there exist configurations of points such that
any matching with the above properties matches fewer tha@598 of the points. We further extend these results
to point sets with a prescribed ratio of the sizes of the two color classes. In the end, we discuss the more genera
problem when the points are colored with any fixed number of color2001 Elsevier Science B.V. All rights
reserved.

Keywords:Non-crossing matching; Algorithm; Probabilistic construction

1. Introduction

We call a setS (|S| > 3) of points in the plane independent or in general position, if no three are on
a line. Aharoni and Saks [10] considered the following problem: we are given$wieh n = w + b
points in general position in the plane, of them white, and> of them black. LetG(S) be a largest
non-crossing matching of pairs of points of the same color, using straight line segments. 0&jine
be the number of points matched BY(S). It is well known that if S is monochromaticG(S) can be
computed in @u logn) time, by sorting the points along a specified direction (e.gx-epordinate), and
matching the first two points, the next two points and so ongl(e} = min{g(S): S C R? independent,
|S| = n}. They asked if it is always possible to match all but a constant number of points. It was shown
in [5] that the answer is negative. In the special case of points in convex position, it is not difficult to
show that the answer is affirmative.
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Our first result presented in Section 2, is am®-time algorithm which computes a matching of
at Ieast%‘n of the points. Besides, it gives an improved lower boundg@m). The algorithm rotates
a sweep-line until it finds a suitable direction which allows a reduction in the problem size; then the
process is repeated. An asymptotically fastén [O0gn)-time algorithm which comes arbitrarily close
to this guarantee, is also provided. This second algorithm employs the divide-and-conquer paradigm,
by dividing into subproblems of constant size. In Section 3, we give a more careful analysis of the
probabilistic construction in [5], showing the existence of point sets where any non-crossing matching
must leave at Iea%%n points unmatched. The previous boundsg@n) given in [5] Weregn and %gn,
respectively.

Theorem 1.1. Forall n > 1,
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In Section 4, the previous results are extended to point sets with a prescribed ratio of the sizes of the
two color classes. Let > 1 be a fixed rational number. Put

g (n) =min{g(S): S c R?independent|S|=n, w/b=r}.

Theorem 1.2. LetreQ, r > 1. Foralln > 1,

(6 2r+1

ax( . 2r—+2)n -0 <g”(m) <en+0(1) for somee, < 1.

In Section 5, we deal with the case when the points are colored by a fixed number oficold@s
We present an @ logn)-time algorithm which finds a matching of at leagé; - n of the points. As a
byproduct, this gives an improved lower boundgii:), the analogue of (n) for k colors. The previous
bound ong (n) given in [5] wasz 5 - n.
Theorem 1.3. For all » > 1 and each fixed > 3,
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6k +1

1= O < () < % 14 O(D).

Finally, we mention that, to the best of our knowledge, the algorithmic complexity of compatisig
or g(S) is open at the moment.

Related results

Matching is a well studied problem in graph theory which has attracted much attention in recent years
in a geometric setting: matching a set of points in the plane using straight line segments. A usual question
is what is a largest size matching under different constraints, such as pairwise non-crossing segments o
pairwise crossing segments in the matching.

Since self-crossing in planar configurations is typically an undesirable attribute, the first results
addressed non-crossing matchings. One can distinguish between the colored and uncolored version c
the problem. For uncolored points, as mentioned in the introduction, if the number of points is even,
a non-crossing perfect matching is possible and easy to find. We add here the fact that a minimum
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length perfect matching is another (efficiently computable) solution to the problem, since the triangle
inequality ensures the non-crossing attribute. So the (related) problem of computing a minimum length
matching gives for free a non-crossing one. As for the problem of computing a maximum length non-
crossing matching, an @logn)-time constant factor approximation algorithm is known [2], though
the computational complexity of finding an optimal solution is currently unknown. Going back to the
maximum size matching, in the two-colored version,itlpoints are divided into two equally-sized color
classes and each segment must join points of different colors. One solution (and algorithm) which gives a
perfect matching, if say the two colors are white and black, is to compute a minimum length white—black
matching. Again the triangle inequality ensures the non-crossing attribute. Another solution involves the
use of so-calletham-sandwich cuf$]. A line which divides the points such that the sizes of the two color
classes are equal in both parts is computed, and the argument (and corresponding algorithm) follows by
induction (recursion) [11]. In another colored version of this problem (in this paper), the segments must
connect points of the same color. A perfect (or almost perfect) matching is not always possible, though a
linear size can be guaranteed.

If one insists instead on a pairwise crossing matching, the best results in this direction guarantee only
a Q(4/n) size matching, in both uncolored and colored (endpoints of different colors) version [1]. An
O(n logn)-time algorithm is provided for this task. On the other hand, no sub-linear upper bounds are
known. A related result in the same direction, states that a pairwise crossing perfect matching exists
(uncolored version) if and only if the point s€t where|S| = n, has precisely:/2 halving lines [9]. An
O(n logn)-time algorithm solves the decision problem and computes such a matching if it exists.

2. Two colors: algorithms and lower bounds
The next proposition and lemma are from [5].

Proposition 2.1 [5]. For any integersk > 2,n > 1, nq, ..., n; > 1, such thatn = ij’;ni,
i=k i=k
gn)=g (Zm) > gn).
i=1 i=1
The above inequality is evident when one thinks about sweeping a vertical line across the point set.

Lemma 2.2 [5]. g(7) =4 and if |S| = 7, g(S) = 6 unless the sef has a special structure, called a
star configuration(seen in Fig. ) the convex hull of has 6 points of alternating colors with the 7th
point inside, which we call the center of the star. If the celitdithe stajy is white, it is contained in the
triangle formed by the 3 black points. If it is black, it is contained in the triangle formed by the 3 white
points.

For a setS of n points in general position in the planek et is a subsef’ C S such thatS’ =SNh
for some half-plané, and|S’| = k (see [6]). Without loss of generality, we can consider only open half-
planes, or half-planes determined by lines that do not contain any of the postsanx, y € S, we call
the oriented segmenty ak-segment ofS if its extension to an oriented line has exadtlpoints of S on
its right side.
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Fig. 1. A star configuration.

The next lemma is the basis for our improved lower bound and corresponding algorithm.
Lemma23. Ifn>12 gn) >6+g(n—7).

Proof. Let S be a set of at least 12 points. We can assume that by swe&giogn any direction until

we pass 7 points, we get a star configuration, otherwise we are done. In other words, all 7Ssats of
stars. Assume, without loss of generality, that all points have distirodiordinates. Denote b§/, the

(7 point) star configuration consisting of the 7 points with the largesbordinates, in other words, the
one which is obtained by sweeping a vertical line oriented upwarggwhered denotes the angle of the
sweep-line) from right to left. Begin to rotate the sweep line clockwise, until we get a different(i-set
when sweeping from that direction. Continue to rotate the sweepglinetil we get to sweep from the
opposite direction, left to rightg(= 180°) and obtain along the way the sequence of star configurations
Co, Cy,...,Cy, for somek > 1. The last term in the sequendag,, corresponds té@ = 180°. For each
i=0,....,k—1, C; andC;,1 have 6 points in common. We write né&t) = C; ;. By Lemma 2.5
(below), C; andC; 1 have the same center (recall that a star has 6 extreme points and one interior point,
the center). Thu€y, ..., C; all have the same center.3fhas at least 12 points, clearly the center points
of Co and C;, must be different. Hence the assumption that all 7-set§ afe stars must have been
false. O

Corollary 2.4. Foreveryk >0, g(7k + 12) > 6k + 10.
Proof. Immediate from Lemma 2.3 and Proposition 2.13

Lemma2.5. LetC andC’ be two neighboring star configurations, such that K€xt= C’. ThenC and
C’ have the same center.

Proof. Without loss of generality, leC be Cy (as in the previous lemma) separated by the vertical
line Iy from the other points. Denote byo, p1, p2, p3, P4, ps, the extreme points of in clockwise

order, and by the center ofC. We can assume thal, the leftmost point ofC, is black. Letp = p;

be the point that is inC but not in C’. Fig. 2 shows the cases= 0 (a) andi = 1 (b). It can be

proved (though it is not needed in our arguments) that these two cases are the only possible, undel
the assumption of the lemma (th@tandC’ are both stars). Lep’ be the “new” point that is irC’ but

not in C (drawn as a small square in Fig. 2). Note that the sweep line passes thpaughp’ when

C is replaced byC’. Therefore,p could not have beeg, the center ofC. If color(g) = color(p), g is
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() (b)

Fig. 2. Rotating sweep-line.

contained in the trianglép;_1, piy1, pi13}, SO it remains interior irC’ (all indices are taken modulo 6).

So we can assume colgh # color(p). Then the pointp’ must have the same color as otherwise

C’ has 5 points of one color and 2 points of the other color, contradicting the structure of a star
configuration. If colofg) # color(p) andgq is contained in either of the triangl€®; 1, pi12, pii3} Or

{pi_1, pi_2, pi+3}, itremains interior irC’. The only remaining possibility is thatis in triangle{p, a, b}
wherea = (pi—2, pi) N (pi—1, pi+1), b= (pi, pir2) N (pi—1, pi+1). But then the six points ik \ {p} are

in convex position withp; _1, ¢ and p; .1 being three consecutive points of the same color, on the convex
hull of C \ {p}. When we add poinp’ to these six points, we gét'. SinceC’ is a star, it must push one

of these three points into the interior. Since the extreme points in stars alternate in color, the point that
gets pushed into the middle must be the middle point of the three consecutive points, or in other.words
Sogq is the center o€’. O

Corollary 2.6. Let p and p’ be the points in whiclC and C’ differ (i.e., |C N C'| =6, C\ C' = {p},
C’'\C={p'}). Thenp and p’ have the same color.

Proof. C andC’ must have the same center by Lemma 2.5. Therejoed p’ must be exterior points

in C andC’ respectively. The exterior points of a star are always split evenly, three black and three white.
Since the other five exterior points 6fandC’ are the same (either 3 black and two white or vice versa),

p and p’ must have the same colorQ

Remark. Lemma 2.3 and its corollary contain the resgi2) = 10 from [5] as a special case.

Algorithm A1l.
Input: a setS of n 2-colored points (white and black).

Output: a matchingM.
Sort the points by-coordinate (assume all distinct). It is known that using the following procedure,

which we shall employ in the background with= 7, one can generate dlisets ofS [7,8]. Sweep a
vertical linel from right to left, until it passes through a poipt and leavesk — 1 points to the right
of [. Orient/ upwards, and lek be this initial position. Rotaté clockwise (we denote bi; the current



74 A. Dumitrescu, R. Kaye / Computational Geometry 19 (2001) 69-85

position ofl) aroundp; until it passes through another poip. Rotatel clockwise aroundp, until it

passes through another popy. Continue this process unfilrotates with 360 degrees, returning to its

initial vertical upward orientatioriy. Let the sequence of (not necessarily distinct) points generated be
p1, ..., pr. TO find next pointp; 1, compute the minimum angle of rotation until a point is hitlpyWe
distinguish two possibilities:

(&) an “L" hitis whenp; p;;1 has an opposite orientation with(i.e., p;;1p; is a(k — 1)-segment);

(b) an “R” hit is whenp; p;;1 has the same orientation with(i.e., p; pi11 is a(k — 2)-segment).

UpdateCy, the currentk-set, when (a) occursCy, := Cy U {x} \ {y}, if x, y are the endpoints of the

correspondingk — 1)-segment.

We now return to the description of our algorithm. Start with a vertical ling oriented upwards,
passing through a point &f, and having exactly 6 points in its open right half-plane. Consttgithe
configuration of seven points defined in this way. We assumedf& a star, otherwise, the algorithm
recurses on a smaller size subset of points, after matching 6 out of 7 poifgdiet L = {a, b, ¢, d, e, f}
be the circular list containing the 6 extreme pointaigf(see Fig. 1). Begin to rotate the sweep lipe
around the current poing; (initially, i =1, p; = a). Sincea, b, ¢, d, e, f are in convex position, with
clockwise orientationjy hits them in this order. For eache L, let v be the element following in this
list. Consider the rotation df. Let 6, be the value of the angle whenl, hits pointu for the first time.
Similarly, we defingd,. Theinterval [u, v) consists of the points which lie dpfor 6 € [0, + ¢, 6, — €],
for a smalle > 0. Note thatx € [u, v) andv ¢ [u, v). For example, the intervdt, d) consists of point
and all the others hit by, after it starts rotating around and before it hits poind. Thelengthof the
interval [u, v) is the number of rotations @ from the moment it hits point and before it hits point.
The rotation at the end of whidh passes through is counted, but not the one at the end of whigh
passes through (for the interval[a, b), we count an extra rotation &t= 0). The algorithm keeps track
of the lengths of the 6 intervalg, b), [b, ¢), [c,d), [d, e), [e, f),[f,a), as long a® < 180C. After at
most 43 rotations, one of the following two favorable evefitor E; must occur (see also Lemma 2.7,
to follow). Then the algorithm recurses on a smaller size subset of points, as indicated below.

1. Event E1: A non-star configuration is found along the way; 6 points are matched out of 7 by
3 monochromatic segments, which are added#ftoThe algorithm recurses on the remaining set
of (n — 7) points which are contained in a convex region (half-plane).

2. EventE;: A convex chainA = {ay, ..., ag} of 8 points of the same color is found, and a Bebf 6
points, such thatfor=1,...,7, a;a;11 is a 6-segment, and the corresponding 6-sét iMoreover,
fori =1,...,8, a; and B form a star. In this case, far=1,..., 4, we matchay;_1 with a5 and
4 points of B (recall thatg(6) > 4 [5]). The algorithm recurses on the remaining Sedf (n — 14)
points which are contained in a convex region (see also Fig. 3).

Lemma2.7. AssumdsS| > 12. Start withd = 0. After at most 43 rotations, either

() a non-star has been found, hence 6 points are matched out of 7, and the remainingrset Of
points are contained in a half-plane, or

(i) 12 points are matched out of 14, and the remaining sét ef 14) points are contained in a convex
region.

Proof. If after at most 43 rotation®, > 180°, a non-star configuration has been found (sweeping across
the point set from left and from right, gives star configurations having different centers, as in the proof
of Lemma 2.3). So we can assume that for the first 43 rotati®ns,180°. We make the following
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Fig. 3. lllustration of the proof of Lemma 2.%,= 8.

A

observations. Whes = 0, then — 1 points which are not yet hit bi, are contained in two convex
regions,Lg—_g and Ry—o, the left and right open half-planes determined/hyDuring rotation ofly, this
property is maintained in the sense that the points which are not yet hijt &se contained in two open
convex regionsLy, and Ry, Ly C Lo, Ry C Ro. The centel is always inRy (otherwise, ifly hits g at
some pointg is not an interior point of the current st@g). If [, rotates around a point and the next point
hit is an “L"-hit, the two points must have the same color by Corollary 2.6.

We monitor the number of hits df, asé varies from 0 to its final valuef,z < 180 after the first
43 rotations. Since, b, ¢, d, e, f are in convex positiony hits them in this order. Consider the 6 half-
closed intervalda, b), [b, ¢), [c,d), [d, e), [e, f),[f, a). Call any such intervashort if its length is at
most 7, andong otherwise. We notice that at least one of the above 6 intervals must be long, otherwise,
after at most 6 7+ 1 = 43 rotationsp > 180C. Let [u, v) be such a long interval, of length at least 8.
Recall that colofu) = color(v). Whenl, rotates around = f;, the first point hit, >, is an “L’-hit (an
“R"-hit would be v, which cannot occur, since the interval, v) is long). By an earlier observation,
color( fo) = color(f1). For 2< k < 8, let f5, ..., fi be a maximum length consecutive subsequence of
lengthk — 1 < 7 of “L"-hits as it occurs during the next rotations bf Thek distinct pointsf, ..., fi
have the same color and form a convex chain.

If k=8, f1,..., fg are matched by 4 segments along this chain, together with 4 out of the six points
of Cy, all together 12 points out of 14. The remainig— 14) points of S lie in the convex regiorLy/,
as noted earlie( is given by the line which passes througifi; and f;), thus they lie above the convex
chain f1, ..., fg extended to infinity at both ends. This is illustrated in Fig. 4. The points are numbered
as they are hit by the rotating line (from 1 to 8 in this example).

If k < 8, asly rotates around}, the next point hit, is an “R”-hit. Note that # v, since[u, v) is along
interval. If color f;) = color(r), we get a non-star configuration, having two adjacent pgfnts, of the
same color, hence 6 points can be matched out of 7. The remdainirg/) points of S lie in a convex
region (half-plane), as noted earlier. If calgy) # color(r), we get again a non-star configuration, having
two adjacent points, v, of the same color (here we have used the fact that gpistalways interior
in Cy). So also in this case, 6 points are matched out of 7, and the rema&inir@) points ofS lie in a
convex region (half-plane).

An example is shown in Fig. 4, with=b, v = ¢, k = 4. The points are numbered as they are hit by
the rotating line (from 1 to 8 in this example). This concludes the proof of our lemma.
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Fig. 4. lllustration of the proof of Lemma 2.%;< 8.

In O(n) time, the algorithm achieves conditions (i) or (ii) in the lemma: there is a constant bound on
the number of rotations, and each can be implemented;it) tOne, used to select the minimum value
of a set of(n — 1) angles. Adding up the cost of the recursion, the total complexity of our algorithm
is O(n?). It is easy to see that it useg#) space. The algorithm guarantee is a matchin%mf— OQ) of
the points.

Algorithm A2. Given a positivee > 0, choose a positive integér such that

6k+10 6

> - —E€&.

Tk+12 7
After sorting then points according to theix-coordinate and dividing them into groups of F+ 12,
6k 4+ 10 are matched in each group. Arifdogn)-time algorithm with a guarantee ()g —&)n—01)
of the points is obtained. The constant hidden in the O notation depenelsFam example, to obtain
a guarantee of 85%, the algorithm divides the points into groups of 40, and matches 34 in each group,
(e.g., using Algorithm Al on a constant size input).

3. Two colors: upper bounds

In all our constructions, all possible collinearities allowed by the description of the point set are avoided
by small perturbations of the points.

In [5], the authors asked whethg¢14) = 10 or 12 and whetheg(16) = 12 or 14. We show here that
in both cases the smaller value is correct. It is easy to seg (hdt > 10 andg (16) > 12.

The 14 point configuration in Fig. 5 has 5 white and 9 black points. To match 12 points out of 14,
one has to leave only one point unmatched from each color. It is easy to see that neither of the two
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Fig. 6. A 20-point configuration describing a random construction.

white pointsw; and w, can be matched in any way while satisfying this requirement. Any matching
of wy (or wy) will force at least two black points to remain unmatched. This shegwist) < 10.
A 16 point configuration where at most 12 points can be matched, can be easily obtained from the
14 point configuration by adding 2 more black points near any one of the interior black points and
following the same analysis. In conjunction with Corollary 2.4, this fills the gaps in the list of exact values
of g(n), for smalln, that we previously had (see [5P(1) =¢g(2) =0; g(3)=g(4d) =2; g(5) =g(6) =
g =4 g8 =g =6 g(l0 =gl =8; g(12 = g(13) = g(14) = 10; g(15 =g(16) =12;
g(17) =g(18) = 14; g(19) = g(20) = 16.

Next, we prove the upper bound in Theorem 1.1 through a more careful analysis of the following
random construction (see [5]). For a givenplacern white andn black points alternately on a circle
as a regular convexn2gon,ws, by, ..., w,, b,, say in counterclockwise order. Foreack 1,...,n we
randomly placeb;, a twin of b; on the other side of the segmemtw;,, and close to the middle of
this segment as in Fig. 6. The twin point is added with probabgia/nd independently for eagh This
random configuratiois hasn white points and: + Y black points,Y being the number of successesin
Bernoulli trials (with paramete%), and a total of S| =N =2n + Y points in all. Clearly 2 < N < 3n.
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p p
2 P, 16

Fig. 7. A non-crossing matching of 16 points with 2 unmatched points and 3 sides.

We say that a matching has a certain color (white/black) if it matches only points of that particular
color. Forg < % g = constant, we study the events

Ar={g(S)=N—gn},  Ay={|N-251>n?3}, A=A1UA,. (1)

A1 is the event that our random s&admits a non-crossing matching with at mgstunmatched points;
in other words, that there exist a white matchiigand a black matchin@ such that at mosjn points
are unmatched usiny + B (this is a shorthand fa¥ U B), a non-crossing matching 6t We will show
that a sufficiently smaly, (e.g.,q = 55) allows ProljA) < 1.

It is well known [3] that fore > 0,

Prob(‘Y - %‘ > oz) < 2e 2%/,

thus ProldA,) = o(1), and in order to obtain Prgd) < 1 we will ensure that Pral;) < 1.

Fix M, a non-crossing white (imperfect in general) matchingSoff m is the number of matched
points, M partitions the circle inton’ = m/2 + 1 convex regions. We say that a region is odd if the
number of black points inside it is odd and even otherwise. A re@ds bounded by elements which
could be either arcs of the circle or straight line segmenta/inThe segments could be either short
chords, joining two adjacent white points 8f or long chords otherwise. When the region is bounded
only by an arc and a short chord, we call isiagletonregion since it contains exactly one black point.
We call asideof M a matched pair of adjacent white points f{see Fig. 7). A somewhat different
meaning was attributed in [5].

We only consider white matchings, for which the number of (white) unmatched points plus the number
of singleton regions is at mosk (otherwise the total number of unmatched points exceadlsDenote
by H(g) = —¢glogqg — (1 — g)log(1 — ¢) the binary entropy of; (here log stands for the logarithm
base 2). The next claim is easy to prove [5].

Claim 3.1 [5]. Let R be a region determined by a white matchiég Then
1
Prob(R is odd > >

More precisely, ifR is a singleton regionProl(R is odd = 1; otherwiseProl(R is odd = %
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Denote by Birin, p) the binomial random variable with parametersp (the number of successes
in n Bernoulli trials with success probability). The number of odd regions which are not singletons is
distributed as a binomial random variable> Bin(m’ —s, %), wheres stands for the number of singleton
regions determined by out of m’. Putx, for the number of unmatched points M.

Claim 3.2. Letq’ be a constant) < ¢’ < ¢ < 3. For M and Z defined earlier,
2H(2q’)n/2

! —
ProZ <¢'n) <D = SREETIER

Proof. Sincem + x, =n andx, +s < ¢gn,

m,_s:_+l_s>n—x;—2s>n—2)622—2s>n(1;2q)

NS

and

m —s <

’

NI S

from which we get

m—s\ 1 n/2 1 2H (2q')n/2
/
PrOdZ < q I’l) < Z < k ) om’—s S Z < k ) 2(1-2q)n/2 < 2(1-2q)n/2"

0<k<g’n 0<k<g'n

In the last line we used the following known bound on the sum of binomial coefficients (see [4] for a
proof, see also [3] for a similar inequality): if 8¢ < % is a constant,

> (m) <2, e

o<m<ng
O

We bound the probability of\; in (1). Put/ = gn, and leta, b < % be two positive constants to be
specified later. Denote the white points py, ..., p, along the circle in say clockwise order. Encode
each matching by &0, 1, 2} string of lengthn as follows: scan the points in increasing order (from
to p,) and for each matched point, write a 0 if the endpoint belongs to a segment which is seen for the
first time and a 1 otherwise (if it is the second time). Write a 2 for each unmatched point. If the number
of matched points i#:, we obtain a string containing /2 0’s andm /2 1's. For our example in Fig. 7,
the encoding is 0002100010112111.

This is an injective function from the set of matchings to the sefOof., 2} strings of lengthn (it
is implied by the non-crossing condition). Each side corresponds to a 01 transition, with at most one
exception, if it matchep; with p,. If a matching has’ sides, there are at mast01 transitions and at
most(s’ — 1) 10 transitions overall. One can specify such an encoding by first choosing the positions of
the 2's in the string, then specifying th¢ Dcharacter after each maximal consecutive substring of 2's
and finally specifying the positions of the 01 and 10 transitions in the remaining free spots (there are less
thann — x, such positions from which to select). The string should start with a 0 or 2 and end with a
1 or 2; it may in general not correspond to a valid matching since it may have, for example, a different
number of O’s and 1's.
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Let M havex, unmatched points andsingleton regions. Then in the corresponding string, the number
of 2's is x,, and the number of 01 transitions yg; < s. The total number of 01 and 10 transitions is
yo1 + y10 < 2y01 < 25. Making repeated use of Claim 3.2, we prove that 3%3 implies ProljA;) < 1.

ProbA)) < Y ProbZ<l—s—x3) <P+ P,
M:z=x2+yo1<!

where
P= )  ProbZ<l-s—xy), P, = > Prob(Z </ —s — x2).
M:xp<al,z<l M:a-l1<x<l,z<l
P< ) ( )22{ > ( 2>Prob(z<l)+ > ( 2>Prob(Z<l—b-l)}
0<ra<al \ 2 o<p<2ni \ P mi<p<a \ P
1
H(a-q)n  oa-q-n {oH@2b-q)n  oH(2q)n/2 H@2q)n  oHQ2(l-b)g)n/2 =
<2 2 {2 2 +2 2 } 2(1-2q)n/2
< 2(El(llaba(1)—l)”/2 for n > nq,
where

Ei(a,b,q) =2H(a-q)+2a-q+max{2H (2b-q) + H(2q),2H(2q9) + H(2(1—b)q) } + 24.

The first sum in the expression #f bounds the contribution to Proh,) of the white matchings with
a small number of unmatched points & - /) and a small number of singleton regions & - /). The
second sum in the expression Bf bounds the contribution to Proh;) of the white matchings with a
small number of unmatched points ¢ - /) and a large number of singleton regiosH - /). Similarly,
we can upper bound,, the contribution to Profd;) of the white matchings with a large number of
unmatched points* a - ).

< Y <”>2xz{ ) (n;x2>Prob(Z<(l—a-l))

X2

a-l<x<l 0<p<L2hl
n—x
+ > < 2)Prolo(z<1—a-1—b-1)}
mi<p<a \ P
1
H(g)n  oq-n foHR2b-q)n  oH(2(l-a)q)n/2 H(2(1-a)g)n  9H(2(l—a—b)q)n/2
< 2 2 {2 2 +2 2 } 2(1-2q)n/2

< 2(E2(asbs(1)_l)”/2 for n 2 no,
where

Ej(a,b,q) = 2H(q) + 29 + max{2H (2b - q) + H (2(1—a)q),2H (2(1 — a)q)
+H(2(1—a—-b)q)} +2q.

We would like to determine some values ferb and a value forg as large as possible, while
satisfying E1(a,b,q) < 1, Es(a,b,q) < 1. It can be checked thak;(0.32 0.44,0.02633 < 1,
E5(0.32,0.44,0.02633 < 1. Thus forn >no, P1 < 3, P, < 3, giving Prol{A;) < 1. Itis easy to see
that for fixeda, b, lim,_.o E1(a, b,q) =0 and lim,_o E2(a, b, q) =0 and thatE1(a, b, -) andEz(a, b, -)
are increasing functions on the interval $). In the end, we choosg= 2 < 0.02633.
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Since N ~ 2.5n with high probability, we conclude that at le _51),38 = 9% of the total number

of points are unmatched with positive probability, so there exists a configuration with this property as
claimed. To prove the upper bound in Theorem 1.1 for ale use the following easy statement.

Claim 3.3. LetU C V be two point sets. Theg (V) — g(U)| < 2|V \ U|.

In the last step of our point set construction, add (or delete) arbitia¥fily 2.5x7| points to (respectively
from) S to get the final point configuratio§’, where|S’| = 2.5n (we have assumedis even). We note
that the number of added (or deleted) points (@)pand since the above inequality gnis strict, the
multiplicative constant in our upper bound is not affected. This completes the proof of the upper bound
in Theorem 1.1.

4. Two colors. point setswith a prescribed color ratio

Let » = w/b be thecolor ratio of a point set havingy white andb black points, wherew > b.
Motivated by the fact that our upper bound construction is not balanced (its color ratioliS)
the following question arises: what happens for balanced point sets (for which), or for highly
unbalanced ones (say with= 1000)?

Next, we prove Theorem 1.2. A lower bound?ﬁ — O(1) holds by Theorem 1.1; we show a better
lower bound forr > 2.5.

Lemma 4.1. Given a familyS of n pairwise disjoint segments in the plane, whose endpoints are in
general position, and an arbitrary ordering of the segments,, ..., s,, extend(in the given order

each segment in both directions until it hits another segment, or a segment extension, or to infinity. Then
when the process is complete, the plane will be partitionedrintol convex regions.

Proof. The statement is an easy consequence of Euler’s formula for planar graphs. The details are left to
the reader. O

Construct a non-crossing matchimyof 2|5/2| of the black points usingb/2] segments (at most
one point remains unmatched). Use Lemma 4.1 to obtain a convex partitioning (of the plane) by
segment extension. Then match the white points in each convex region (at most one per region remain:
unmatched). In this way we have obtained a matching efb/2 — O(1) points; sincer = w/b, this
meansz+3n — O(1) points.

Now we describe the upper bound construction, which is a modification of the one used earlier in the
unrestricted case: first selectodd; then follow the same steps as for the construction in Fig. 6. Recall
that we now have: white points and: + Y black points, wher& stands for the number of black twin
points obtained aftet coin flips. Letr = s/¢. Place a cluster oft[(n + Y)/t1(s/t) — n) white points
very close to the center of the circle, but otherwise arbitrarily (see Fig. 8).

We refer to this group of points as theefite) cluster Place(t[(n + Y)/t]1 — (n + Y)) black points
in a small cluster somewhere outside the circle. Note #thats[(n +Y)/t] andb =t[(n +Y)/t], SO
the resulting sef has the prescribed color ratio. Assume for simplicity tha¢z + Y), so there are no
black points outside the circle (in general, the size of the black cluster is bounded by a canstadt,
its influence can be ignored for largé. In this case, the size of the center clustefis- Y)r — n.
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Fig. 8. A white matching in the modified construction.

Let M + B be a matching of points if. As in Section 3, we restrict our attention to white matchings
M for which the number of (white) unmatched points plus the number of singleton regions is atimost
(otherwise the total number of unmatched points exceediswe call such a matching-good A white
matching M consists of three types of segmentsirdle) chords (circle) rays and cluster segments
Chords match two points on the circle, rays match a point in the cluster with a point on the circle and
cluster segments match two points in the cluster. Sinteeodd, any chord leaves the center cluster on
one side of it. We assum¥ contains at least two rays, the other case is easy. We distinguish two types of
regions: achord regionis a (convex) region whose boundary consists of circle arcs and chosdsia
regionis a region which has two ray segments on its boundary. At most one non-convex sector region
can exist. Two adjacent rays can be viewed as having a common endpoint in the center cluster — in the
sense that the set of endpoints of rays in the cluster is irrelevant, see below.

Two white matchings are said to be equivalent if they determine the same pattern on the circle, i.e., if
the set of points on the circle which are matched by rays and the set of chords are the same in both. So tw
equivalent matchings will create the same sets of sector (respectively chord) regions. For two equivalent
matchings, we will generously assume that the points in the center cluster which are unmatched by rays,
are perfectly matched inside the cluster without creating any crossings. From now on, when referring to
a white matching, we will not make any distinction between two equivalent ones.

Analogously to the procedure described in the previous section, one can encode a set of equivalen
white matchings by 40, 1, 2, 3} string of lengthn. We write a 3 for a point on the circle which is
matched to a point in the cluster (it is irrelevant to which one); the other encoding conventions are the
same. For the example in Fig. 8 (with=1,Y = 7), the encoding is 003330213201311. kebe the
number of symbolg in the string. We haveg + x1 + x2 + x3 = n, wherexg = x1. The humber of (sector
and chord) regions igy + x3.
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Claim 4.2. The number ofi-good white matchings is at moat@”, for some functiorE(-) such that
lim,_0E(g) =0andE(-) is increasing on the intervaD, %1).

Proof. For a sector regioR, define its size to be the number of white points on the circle in between
the two rays, and denote it by si#®). If size(R) > 1, we callR alarge sector regionotherwise, amall
sector region Observe that each large sector region determines at least one unmatched pointRjf size
is odd, there will be an unmatched white point in between its extreme rays; {RSireven, the white
points in between its extreme rays must form a perfect (hon-crossing) matching, so there will exist an
adjacent pair connected by a segment (a sidé pfleaving an unmatched black point.
To get an upper bound on the numbegejoodwhite matchings, we bound the number of encodings.
To specify an encoding we choose
(1) the positions of 2 in the string (recall < gn) and the next symbol after each maximal string of 2’s,
(2) the starting positions of large sector regions (their number is also at gmodty the above
observation),
(3) the ending positions of large sector regions,
(4) the starting positions of maximal sequences of consecutive small sector regions (their number is
bounded by the number of large sector regions, if this number is positive, otherwise is one),
(5) the ending positions of maximal sequences of consecutive small sector regions,
(6) the positions of 01 (respectively 10) transitions in the string.
The number of choices for each itemabove is bounded by 2" (using(2)) for some functiore; ()
such that lim)_,ge;(¢) = 0 ande; (-) is increasing on the interva0, %1). The claim follows from the fact
that the family of these functions is closed with respect to finite suras.

Claim 4.3. For each(sector or chordl region R,

. 1
Prol(R is odo) > >

Proof. Clear from construction; see also Claim 3.1, and [5] for a formal proaf.

Claim 4.4. The number ofsector and chorgdregions is> (n — x2)/2 > (n — gn)/2.

Pr oof.
2(xo + x3) +x2 > xo + X1 + X2 + X3 =1n.

The claim is readily implied. O

We want to bound from above Proby) as in Section 3: a calculation similar to the one made in [5]
(or along the lines of the proof in Section 3) goes through (i.e., ob< 1) based on the fact that the
total number of white matchings has been reduced to the number of inequivalent ones. Putting together
all of the above we obtain the upper bound in Theorem 1.2. A similar argument to the one given in the
proof of Theorem 1.1 shows that the statement holds fomarhe details are left to the reader.



84 A. Dumitrescu, R. Kaye / Computational Geometry 19 (2001) 69-85

5. Threeor morecolors

Let k > 3 be the number of colors (fixed). The upper bound in Theorem 1.3 was proved in [5]. Here
we prove the lower bound.

Lemma5.1. Fork > 3, g, (6k +1) =

Proof. First we prove the statement fbre= 3. g3(19) < g3(21) < ( )21—2 =12 (see [5]). To prove the
opposite inequality, consider a sgtwith |S| = 19 points colored by 3 colord, 2, 3}. Write the sizes of
the three color classes in nondecreasing ondes n, < n3, whereny +ny + ng = 19.

If n1 < 4,n2+ nz > 15 thusgs(S) > g2(15) > 3g(5) =

If n; =5 andn, < 6, thennz > 8. Sincen; + n, > 10 andg,(10) = 8, 8 points of colors 1 and 2 can
be matched by 4 disjoint segments. Using Lemma 4.1, by extending these segments, the plane is dividec
into 5 convex regions. Then either there exists a region containing 4 points of color 3 (from at least 8
of this color), or there exist 2 regions each containing at least 2 points of color 3. In either case, 4 more
points can be matched, giving a total of 12 matched points.

If ny =5 andn, =7, orny, =6 andn, = 6, we haven; + np, = 12 andnz = 7. Sinceg,(12) = 10,
10 points of colors 1 and 2 can be matched using 5 disjoint segments. Again using Lemma 4.1, by
extending these segments, the plane is divided into 6 convex regions. There must be 2 points (out of 7)
of color 3 in one of these regions, which can be matched. Again the total is 12 matched points.

Next we prove the statement for aky= 3. g, (6k + 1) < gx (7k) < %(7k) —2=12 (see [5]). To show
the opposite inequality, consider a sktwith |S| =n =6k + 1 points colored by > 3 colors. Write
the sizes of the color classes in nondecreasing orgder n, < - < ng, whereZ 1n, = n Then
ni_2+ni_1+n; > 19 (otherwiser; < 6, Vi <k — 3, which |mpI|esZ 1n, =>"'= l+Z i oM <
6(k — 3) + 18 =6k < n, a contradiction). Using the result fér= 3, g3(19 = 12 we getg(6k + 1) >
g3(19=12. O

Algorithm. Then points are sorted according to theicoordinate and divided into groups of 6 1;

then 12 are matched in each group. This is done by matching 12 out of 19 points in the largest three color
classes (by Lemma 5.1, with= 3). The time to process a group igA), so the total time is Q:logn).

The number of matched points is bounded as in the theorem.
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